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Common Knowledge and Sequential Team Problems
Ashutosh Nayyar and Demosthenis Teneketzis

Abstract—We consider a general sequential team problem based
on Witsenhausen’s intrinsic model. Our formulation encompasses
all teams in which the uncontrolled inputs can be viewed as ran-
dom variables on a finite probability space, the number of con-
trol inputs/decisions is finite and the decisions take values in fi-
nite spaces. We define the concept of common knowledge in such
teams and use it to construct a sequential decomposition of the
problem of optimizing the team strategy profile. If the information
structure is classical, our common knowledge based decomposi-
tion is identical to classical dynamic program. If the information
structure is such that the common knowledge is trivial, our decom-
position is similar in spirit to Witsenhausen’s standard form based
decomposition [17]. In this case, the sequential decomposition is
essentially a sequential reformulation of the strategy optimization
problem and appears to have limited value. For information struc-
tures with nontrivial common knowledge, our sequential decom-
position differs from Witsenhausen’s standard form based decom-
position because of its dependence on common knowledge. Our
common knowledge based approach generalizes the common in-
formation based methods of [12]–[14].

Index Terms—Common knowledge, stochastic optimal control,
stochastic systems, team theory.

I. INTRODUCTION

This note deals with the problem of decentralized decision mak-
ing. Such problems arise in any system where multiple agents/decision
makers (DMs) have to take actions/make decisions based on their re-
spective information. Examples of such systems include communica-
tion and power networks, sensing and surveillance systems, networked
control systems, and teams of autonomous robots. We focus on prob-
lems which are as follows:
1) Cooperative, i.e., problems where different DMs share the same

objective. Such problems are called team problems [3], [6], [7],
[10], [11], [16], [21], [22];

2) Stochastic, i.e., problems where stochastic models of uncertainties
are available and the goal is to minimize the expected value of the
system cost;

3) Sequential, i.e., problems where the DMs act in a predetermined
order that is independent of the realizations of the uncertain inputs
or the choice of the decision strategy profile. Further, this order
satisfies a basic causality condition: the information available to
make a decision does not depend on decisions to be made in the
future.
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Decentralized decision-making problems with the above character-
istics are referred to as sequential team problems.

Sequential team problems can be categorized based on their informa-
tion structures. Classical information structures have the perfect recall
property, that is, the information available to make a decision includes
all the information available to make all the past decisions. The clas-
sical dynamic program based on Markov decision theory provides a
systematic way of solving sequential team problems with classical in-
formation structure [8], [19]. This method allows us to decompose the
problem of finding optimal strategies for all agents into several smaller
problems, which must be solved sequentially backward in time to ob-
tain optimal strategies. We refer to this simplification as a sequential
decomposition of the problem.

When the information structure is not classical, a general sequen-
tial decomposition is provided by Witsenhausen’s standard form based
method [17]. The idea of the standard form approach is to consider the
optimization problem of a designer who has to select a sequence of
decision strategies, one for each agent. The designer knows the system
model (including the system cost function) and the probability distribu-
tions of uncertain inputs but does not have any other information. The
designer sequentially selects a decision strategy for each agent. The
designer’s problem can be shown to be a problem with (trivially) clas-
sical information structure. This approach can be used to decompose
the designer’s problem of choosing a sequence of decision strategies
into several subproblems that must be solved sequentially backward
in time. In each of these subproblems, the designer has to optimize
over one decision strategy (instead of the whole strategy profile). This
approach for obtaining a sequential decomposition of sequential team
problems has been described in detail in [17] and [9].

In this note, we provide a new sequential decomposition for se-
quential team problems. Our approach relies on the idea of common
knowledge in sequential team problems. In response to the sequen-
tial nature of the team problems, we study, our definition of common
knowledge is itself sequential, that is, it changes for each decision to
be made. At any given time, common knowledge represents the infor-
mation about uncertain inputs and agents’ decisions that is available to
all current and future DMs. We show that DMs can use this common
knowledge to coordinate how they make decisions. Our methodology
provides a sequential decomposition for any sequential team problem
with finitely many DMs and with finite probability and decision spaces.
We can make three observations about our common knowledge based
decomposition as follows:
1) If the underlying information structure is classical, our sequential

decomposition reduces to the classical dynamic program.
2) For information structures with nontrivial common knowledge, our

sequential decomposition differs from Witsenhausen’s standard
from based decomposition because of its dependence on common
knowledge. The use of common knowledge allows our sequential
decomposition to have simpler subproblems than those in Witsen-
hausen’s standard form approach.

3) For information structures with trivial common knowledge (see
Section V), our decomposition is similar in spirit to Witsenhausen’s
standard form based decomposition [17]. In this case, the sequen-
tial decomposition is essentially a sequential reformulation of the
strategy optimization problem and appears to have limited value.

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on March 03,2020 at 21:40:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8310-7505
https://orcid.org/0000-0002-0450-5992
mailto:ashutosn@usc.edu
mailto:teneketzis@eecs.umich.edu


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 12, DECEMBER 2019 5109

The common knowledge approach described in this note general-
izes the common information method of [12]. The common infor-
mation method has been used in [13] and [14] for studying delayed
history sharing and partial history sharing models in decentralized
control. In contrast to the common information based methods of
[13], [14], the common knowledge approach of this note does not
require a part of agents’ information to be nested over time. Fur-
ther, in some cases, it can produce a sequential decomposition that
is distinct from, and simpler than, the common information based
decomposition.

We will adopt Witsenhausen’s intrinsic model [1], [18], [19] to
present our results for general sequential team problems. Models sim-
ilar to the intrinsic model have been presented in [20]. The intrinsic
model encompasses all systems in which (1) the uncontrolled inputs
can be viewed as random variables defined on a probability space
(Ω,F ,P ); (2) the number of decisions to be taken is finite (T ), (3) the
tth decision can be viewed as an element of a measurable space (Ut ,Ut )
in which all singletons are measurable; and (4) the decision strategy
for the tth decision can be viewed a measurable function from the
measurable space (Ω × U1 × · · · × UT ,Jt ) to the measurable space
(Ut ,Ut ), where Jt ⊂ F ⊗ U1 ⊗ · · · ⊗ UT is a sigma-algebra that de-
notes the maximal information (knowledge) that can be used to select
the tth decision.

Organization: The rest of the note is organized as follows. We de-
scribe the intrinsic model and information structures in Section II. We
review the dynamic program for classical information structures in
Section III. We define common knowledge for sequential team prob-
lems and use it to derive a sequential decomposition in Section IV. We
compare common knowledge based sequential decomposition with the
classical dynamic program and with Witsenhausen’s standard form in
Section V. We compare our common knowledge approach with the
common information approach used in prior work in Section VI. We
conclude in Section VII.

Notation: We denote random variables by capital letters and their
realizations by corresponding small letters. Some random variables are
denoted by small Greek letters (e.g., γ, ω ) and we use ˜ or ˆ to denote
a particular realization (as in γ̃, ω̂). For any variable ∗, we use ∗1:t as
a shorthand for (∗1 , ∗2 , . . . , ∗t ). For sets A1 , . . . , At , A1:t denotes the
product set A1 × · · · ×At . R is the set of real numbers and B(R) is
the Borel sigma-algebra on R. If A1 , . . . , Ak form a partition of a set
Ω, then σ(A1 , . . . , Ak ) denotes the sigma-algebra generated by this
partition.

II. THE INTRINSIC MODEL

Consider a stochastic system with finitely many decisions/control
inputs. The decisions are denoted by Ut , t = 1, 2, . . . , T, and take
values in measurable spaces (Ut ,Ut ), t = 1, 2, . . . , T, respectively.
All uncontrolled inputs to the stochastic system are modeled as a
random vector ω = (ω1 , ω2 , . . . , ωN ) taking values in a measur-
able space (Ω,F). A probability measure P on (Ω,F) specifies
the probability distribution of the random vector ω. The compo-
nents of ω are referred to as the primitive random variables of the
system.

A. Decision Strategies and the Optimization Problem

For t = 1, 2, . . . , T , we define U1:t as the vector (U1 , U2 , . . . , Ut )
and U−t as (U1 , . . . , Ut−1 , Ut+1 , . . . , UT ); we also define the product
measurable space (U1:t ,U1:t ) as

U1:t := U1 × · · · × Ut , U1:t := U1 ⊗ · · · ⊗ Ut . (1)

It is convenient to think of each of the T decisions as being chosen
by a distinct DM.1 The information available to the tth decision maker
(DM t) may depend on the realization of ω and the decisions made
by other DMs. In the intrinsic model [1], [18], [19], this information
is represented by a sigma-algebra Jt ⊂ F ⊗ U1:T . The decision Ut is
chosen according to

Ut = gt (ω, U1:T ) (2)

where gt is a measurable function from the measurable space (Ω ×
U1:T ,Jt ) to the measurable space (Ut ,Ut ), that is

gt : (Ω × U1:T ,Jt ) �→ (Ut ,Ut ). (3)

The function gt is called the decision strategy of the t−th DM and the
collection of all T decision strategies g = (g1 , g2 , . . . , gT ) is called
the decision strategy profile.

The performance of the stochastic system is measured by a cost func-
tion c : (Ω × U1:T ,F ⊗ U1:T ) �→ (R,B(R)). We can now formulate
the following optimization problem.

Problem 1: Given the probability model (Ω,F ,P) for the ran-
dom vector ω, the measurable decision spaces (Ut ,Ut ), t = 1, . . . , T ,
the sigma-algebras Jt ⊂ F ⊗ U1:T and the cost function c : (Ω ×
U1:T ,F ⊗ U1:T ) �→ (R,B(R)), find a decision strategy profile g =
(g1 , . . . , gT ), with gt as described in (3) for each t, that achieves

inf
g

E[c(ω, U1 , . . . , UT )] exactly or within ε > 0

where Ut = gt (ω, U1:T ) for each t.
Remark 1: A choice of strategy profile for the stochastic system

creates a system of closed loop equations:

ut = gt (ω̃, u1:T ), t = 1, . . . ,T (4)

for each realization ω̃ of the random vector ω. In general, there may
exist ω̃ ∈ Ω for which this system of equations does not have a unique
solution. In that case, the optimization problem is not well-posed.
However, when properties C [18] or CI [1] hold, the above system of
equations has a unique solution. Properties C and CI trivially hold for
the sequential information structures we investigate in this note.

B. Information Structures

The sigma algebras J1 , . . . ,JT specify the information available
for making each of the T decisions and are collectively referred to
as the information structure of the problem. Information structures
are classified according to the relationships among the sigma algebras
J1 , . . . ,JT and F ⊗ U1 ⊗ · · · ⊗ UT .

Sequential and Nonsequential Information Structures: We say that
the information structure is sequential if there exists a permutation
p : {1, 2, . . . , T } �→ {1, 2, . . . , T } such that for t = 1, . . . , T,

Jp (t) ⊂ F ⊗ Up (1) ⊗ Up (2) ⊗ · · · ⊗ Up (t−1)⊗
{∅,Up (t)} ⊗ · · · ⊗ {∅,Up (T )}. (5)

Otherwise, the information structure is said to be nonsequential.
The sequence p(1), . . . , p(T ) can be interpreted as time and (5) as

a causality condition. Note that for a sequential system there may be
more than one permutation satisfying the causality condition (5). In
the following sections, without loss of generality, we will let p be the
identity map, that is, p(t) = t.

Sequential information structures are further classified as follows:
1) Static: If Jt ⊂ F ⊗ {∅,U1:T } for all t.
2) Classical: If Jt ⊂ Jt+1 for t = 1, . . . , T − 1.

1The fact that some of the DMs may be the same physical entity is of no
relevance for our purposes.
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3) Quasi-classical (partially nested): Recall that for sequential infor-
mation structures

Jt ⊂ F ⊗ U1 ⊗ · · · ⊗ Ut−1 ⊗ {∅,Ut} ⊗ · · · {∅,UT }. (6)

For s < t, we say that the decision Us does not affect the informa-
tion of the tth DM if

Jt ⊂ F ⊗ U1 ⊗ · · · ⊗ Us−1 ⊗ {∅,Us}⊗
Us+1 ⊗ · · · ⊗ Ut−1 ⊗ {∅,Ut} ⊗ · · · {∅,UT }. (7)

If (7) is not true, we say that the decision Us affects the infor-
mation of the tth DM. An information structure is quasi-classical
(partially nested), if Js ⊂ Jt for every s < t such that Us affects
the information of the tth DM.

4) Nonclassical: An information structure that does not belong to the
above three categories is called nonclassical.

C. Finite Spaces Assumption

In the rest of the note, we will assume that the random vector ω takes
values in a finite set and that the decision spaces are finite.

Assumption 1: Ω and Ut , t = 1, . . . , T, are finite sets. Further,F =
2Ω and Ut = 2Ut , for t = 1, . . . , T .

D. Information Sigma Algebra and Generating Observations

Consider a sigma-algebra Jt ⊂ F ⊗ U1:T representing the in-
formation available to a DM. Consider a collection of variables
Za , Zb , . . . , Zk defined as functions from Ω × U1:T to spaces
Za , . . . ,Zk , respectively, i.e.,

Zi = ζi (ω, U1:T )

where ζi : Ω × U1:T �→ Zi , i = a, b, . . . , k. (8)

We will call Zi = ζi (ω, U1:T ) an observation and ζi its observation
map. For realizations ω̃ and u1:T of ω and U1:T , respectively, zi =
ζi (ω̃, u1:T ) is the corresponding realization of the observation Zi . We
will denote by σ(Za , . . . , Zk ) the smallest sigma algebra contained in
F ⊗ U1:T with respect to which the observation maps ζa , . . . , ζk are
measurable. We say that observations Za , . . . , Zk generate the sigma-
algebra Jt if

σ(Za , . . . , Zk ) = Jt .

III. BRIEF DISCUSSION ON CLASSICAL INFORMATION STRUCTURES

As mentioned earlier, a sequential decomposition for team prob-
lems with classical information structure is provided by the classical
dynamic program. In order to compare our results with the classical
sequential decomposition, we will state the classical dynamic program
in Theorem 1 below. Before doing so, we would like to make a few
observations about the classical information structure.

Consider Problem 1 with a classical information structure. It is
straightforward to construct observations Zt = ζt (ω, U1 , . . . , Ut−1 ),
t = 1, . . . , T, with Zt taking values in a finite set Zt , such
that σ(Z1:t ) = Jt . Further, under a classical information structure,
Problem 1 can be easily transformed into the following equivalent
problem where the tth DM knows Z1:t , U1:t−1 .

Problem 2: Given observations Zt = ζt (ω, U1 , . . . , Ut−1 ) taking
values in Zt for t = 1, . . . , T, find a decision strategy profile g =
(g1 , . . . , gT ), with gt : Z1:t ×U1:t−1 �→ Ut for each t, that achieves

inf
g

E[c(ω, U1 , . . . , UT )] exactly or within ε > 0

where Ut = gt (Z1:t , U1:t−1 ) for each t.
Sequentially dominant strategies: We say that a strategy g∗T is

a sequentially dominant strategy for DM T if for any strategies

g1 , g2 , . . . , gT

J(g1 , g2 , . . . , gT ) ≥ J(g1 , . . . , gT −1 , g
∗
T ).

We can now define sequentially dominant strategies for other DMs re-
cursively: Given sequentially dominant strategies g∗k+1 , g

∗
k+2 , . . . , g

∗
T

for DMs k + 1 to T , we say that g∗k is a sequentially dominant strategy
for DM k if for any strategies g1 , g2 , . . . , gk

J(g1 , . . . , gk−1 , gk , g
∗
k+1 , . . . , g

∗
T )

≥ J(g1 , . . . , gk−1 , g
∗
k , g

∗
k+1 , . . . , g

∗
T ).

In teams with classical information structures, sequentially dominant
strategies always exist under Assumption 1. In fact, the classical dy-
namic program provides a way of constructing these sequentially dom-
inant strategies for teams with classical information structures. The
existence of such strategies is crucially dependent on the fact that in
teams with classical information structures each DM’s posterior belief
onω does not depend on the choice of strategy profile [8], [15]. For DM
t, we denote this strategy-independent belief by πt . It can be defined
as follows:

πt (ω̃|z1:t , u1:t−1 ) :=
P (ω̃)

∏t
k=1 1{ζ k (ω̃ ,u 1 :k −1 )= zk }∑

ω̂

[
P (ω̂)

∏t
k=1 1{ζ k (ω̂ ,u 1 :k −1 )= zk }

] (9)

∀ω̃ ∈ Ω and for z1:t , u1:t−1 such that the denominator in (9) is nonzero.
Theorem 1: For a sequential team problem in Problem 2, define

value functions and strategies as follows:

VT (z1:T , u1:T −1 )

:= min
u T ∈UT

EπT [c(ω, u1 . . . , uT )|z1:T , u1:T −1 ]

Vk (z1:k , u1:k−1 )

:= min
u k ∈Uk

Eπ k [Vk+1 (z1:k , Zk+1 , u1 . . . , uk )|z1:k , u1:k−1 ] (10)

g∗T (z1:T , u1:T −1 )

:= argmin
u T ∈UT

EπT [c(ω, u1 . . . , uT −1 , uT )|z1:T , u1:T −1 ]

g∗k (z1:k , u1:k−1 )

:= argmin
u k ∈Uk

Eπ k [Vk+1 (z1:k , Zk+1 , u1 . . . , uk )|z1:k , u1:k−1 ] (11)

where k < T , Zk+1 = ζk+1 (ω, u1:k ) and the expectations are with
respect to DMs’ strategy-independent beliefs on ω. The strategies
g∗T , . . . , g

∗
1 are sequentially dominant strategies for DM T to DM 1,

respectively. Consequently, (g∗1 , . . . , g
∗
T ) is an optimal strategy profile.

Proof: The theorem can be proved using a standard dynamic pro-
gramming argument [8] with Sk = (Z1:k , U1:k−1 ) as the state at time
k. An alternative proof using strategy-independent beliefs can be found
in [15]. �

Nonclassical Information Structure and Absence of Sequentially
Dominant strategies: We present a simple example to show that if
the information structure is nonclassical, sequentially dominant strate-
gies may not exist. Consider a simple sequential problem with two
DMs. ω takes values in the measurable space (Ω = {0, 1},F = 2Ω )
with equal probabilities. The decision spaces of the two DMs are
U1 = {0, 1} and U2 = {0, 1, 2}, respectively, each associated with
the corresponding power set sigma algebra. The cost function is
c(ω, U1 , U2 ) = (ω + U1 − U2 )2 . Consider a classical information
structure where DM 2 knows ω and U1 . In this case, it is easy to
verify that g∗2 (ω, U1 ) = ω + U1 is a sequentially dominant strategy for
DM 2. Consider now the following nonclassical information structure:

J1 = 2Ω × {∅,U1} × {∅,U2}, J2 = {∅,Ω} × 2U1 × {∅,U2}.
(12)
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In other words, DM 1’s strategy can be any function of ω, while DM 2’s
strategy can be any function U1 . Consider now two possible strategy
pairs

(i) U1 = g∗1 (ω) = ω, U2 = g∗2 (U1 ) = 2U1

(ii) U1 = h∗
1 (ω) = 1 − ω, U2 = h∗

2 (U1 ) = 1.

It is easy to verify that both strategy pairs achieve the optimal expected
cost equal to 0, whereas strategy pairs (g∗1 , h∗

2 ) and (h∗
1 , g

∗
2 ) result

in positive expected costs. This illustrates that neither g∗2 nor h∗
2 is a

sequentially dominant strategy for DM 2. In fact, for any strategy λ of
DM 2, at least one of J(g∗1 , λ) and J(h∗

1 , λ) is positive. This implies
that there is no sequentially dominant strategy for DM 2. Therefore, we
cannot find an optimal strategy for DM 2 without taking into account
the strategy of the DM who acted before.

More generally, the absence of sequentially dominant strategies in
nonclassical information structures means that we cannot find DM t’s
optimal strategy without taking into account the strategy of the DMs
who acted before it. Thus, for nonclassical teams, we cannot expect
to obtain a sequential decomposition of the kind in Theorem 1, where
we could obtain DM t’s strategy without considering the strategies of
earlier DMs.

IV. COMMON KNOWLEDGE AND SEQUENTIAL TEAM PROBLEMS

For classical information structures, Theorem 1 provides a sequen-
tial decomposition for obtaining an optimal strategy profile. Since
Theorem 1 is limited to classical information structures, we need a
new methodology to obtain a similar decomposition for nonclassical
information structures. We will use common knowledge to construct
a sequential decomposition and refer to it as the common knowledge
based dynamic program.

Recall that the information available to DM t is described by a
sigma-algebra Jt ⊂ F ⊗ U1:T . We define the common knowledge at
time t as the intersection of sigma algebras associated with DMs t to
T . That is, we define

Ct :=
T⋂

s= t

Js . (13)

Common knowledge was first defined in [2] in the context of static
decision problems. A related definition of “common information” and
“private information” for static decision problems was presented and
discussed in [4] and [5].

Lemma 1 (Properties of Common Knowledge):
1) Coarsening property: Ct ⊂ Jt for all t.
2) Nestedness property: Ct ⊂ Ct+1 for t < T .
3) Common observations: There exist observations Z1 , Z2 , . . . , ZT ,

with Zt taking values in a finite measurable space (Zt , 2Zt ) and

Zt := ζt (ω, U1 , . . . , Ut−1 ) (14)

such that σ(Z1:t ) = Ct . These variables will be referred to as com-
mon observations.

4) Private Observations: There exist observations Y1 , Y2 , . . . , YT ,
with Yt taking values in a finite measurable space (Yt , 2Yt ) and

Yt := ηt (ω, U1 , . . . , Ut−1 ) (15)

such that σ(Z1:t , Yt ) = Jt . These variables will be referred to
as private observations. Further, any Jt /Ut -measurable decision
strategy can be written as Ut = gt (Z1:t , Yt ).

Proof: The proof is by construction and can be found in [15]. �
We can now state Problem 1 for a general information structure

under Assumption 1 in terms of common and private observations as
follows.

Problem 3: Given common observations Zt = ζt (ω, U1 , . . . ,
Ut−1 ) taking values in Zt and private observations Yt =

ηt (ω, U1 , . . . , Ut−1 ) taking values in Yt for t = 1, . . . , T, find a deci-
sion strategy profile g = (g1 , . . . , gT ), with gt : Z1:t × Yt �→ Ut for
each t, that achieves

inf
g

E[c(ω, U1 , . . . , UT )] exactly or within ε > 0

where Ut = gt (Z1:t , Yt ) for each t.

A. Common Knowledge Based Dynamic Program

We now proceed as follows:
1) First, we formulate a new sequential decision-making problem

from the point of view of a coordinator whose information at
time t is described by the common knowledge sigma algebra Ct =
σ(Z1:t ) at that time.

2) Next, we show that for any strategy profile in Problem 3, we
can construct an equivalent strategy in the coordinator’s problem
that achieves the same cost (with probability 1). Conversely, for
any strategy in the coordinator’s problem we can construct an
equivalent strategy profile in Problem 3 that achieves the same
cost (with probability 1).

3) Finally, we obtain a dynamic program for the coordinator’s prob-
lem. This provides a sequential decomposition for Problem 3 due
to the equivalence between the two problems established in Step 2.

We elaborate on these steps below.
Step 1: We consider the following modified problem. We start with

the model of Problem 3 and introduce a coordinator who has the fol-
lowing features:
1) At each time t, the coordinator’s information is described by the

sigma algebra Ct = σ(Z1:t ).
2) At each time t, the coordinator’s decision space is the set of all

functions from the space of DM t’s private observation (Yt ) to DM
t’s decision space (Ut ). The set of all functions from Yt to Ut

can be identified with the product space U |Yt |
t = Ut × · · · × Ut

(where the number of terms in the product is |Yt |).
We use γt to denote the element from the set U |Yt |

t selected by the
coordinator at time t. γt is a tuple of size |Yt |. γt (y) denotes the yth
component of this tuple.

Interpretation of γt : γt (y) is to be interpreted as the decision pre-
scribed by the coordinator to DM t if DM t’s private observation takes
the value y. Thus, γt can be seen as a prescription to DM t that speci-
fies for each value of DM t’s private observation a prescribed decision.
Given the prescription γt from the coordinator and the private obser-
vations Yt , the decision taken by DM t can be written as follows:

Ut = γt (Yt ). (16)

Procedure for selecting prescriptions: The coordinator chooses its
prescription at time t, i.e., γt , as a function of the common observations
until time t. That is, the coordinator uses a sequence of functions
ψ := (ψ1 , ψ2 , . . . , ψT ), where

ψt : Z1:t �→ U |Yt |
t (17)

to choose the prescription. The sequence of functions ψ :=
(ψ1 , ψ2 , . . . , ψT ) is referred to as the coordinator’s strategy. If the
realization of common observations by time t is z1:t , the prescription
chosen using the strategy ψ is ψt (z1:t ).

The optimization problem for the coordinator is to find a strategy ψ
that achieves

inf
ψ

E[c(ω, U1 , . . . , UT )] exactly or within ε > 0

where Ut = γt (Yt ) and γt = ψt (Z1:t ).
Step 2: The key idea of this step is to establish an equivalence

between Problem 3 and the coordinator’s problem defined above.
Consider a strategy profile g = (g1 , g2 . . . , gT ) in Problem 3. Under
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this strategy profile, Ut = gt (Z1:t , Yt ), t = 1. . . . , T . This strategy
profile induces a joint probability distribution on ω, U1:T , Y1:T , Z1:T .
P g (ω̃, u1:T , y1:T , z1:T ) denotes the probability of the realization
ω̃, u1:T , y1:T , z1:T under the probability distribution induced by g.

We will now construct a strategy ψ for the coordinator using the
strategy profile g. Recall that gt , DM t’s strategy in Problem 3, maps
Z1:t × Yt to Ut . We will think of gt as a collection of partial functions
from Yt to Ut , one for each z1:t ∈ Z1:t . For each z1:t , the correspond-
ing partial function from Yt to Ut can be identified with an element of
the set U |Yt |

t .
For each time t, following is the main idea of constructing the

coordinator’s strategy from g.
1) For each realization z1:t of common observations, gt (z1:t , ·) :

Yt �→ Ut . This mapping from Yt to Ut can be identified with
an element in the product space U |Yt |

t .
2) For each realization z1:t of common observations, the coordina-

tor will select the prescription (that is, an element from U |Yt |
t )

identified with the mapping gt (z1:t , ·) : Yt �→ Ut .
3) With a slight abuse of notation, we can describe the coordinator’s

strategy as

ψt (z1:t ) := gt (z1:t , ·).
The above expression is to be interpreted as follows: Recall that
ψt (z1:t ) is an element of U |Yt |

t , that is, it is a tuple of size |Yt |. The
above expression says that for y = 1, . . . , |Yt |, the yth component
of ψt (z1:t ) is given by gt (z1:t , y).

The coordinator’s strategyψ constructed above induces a joint prob-
ability distribution onω, U1:T , Y1:T , Z1:T . Pψ (ω̃, u1:T , y1:T , z1:T ) de-
notes the probability of the realization ω̃, u1:T , y1:T , z1:T under the
probability distribution induced by ψ.

Lemma 2: The probability distributions P g and Pψ are identical,
that is, for any ω̃, u1:T , y1:T , z1:T

Pψ (ω̃, u1:T , y1:T , z1:T ) = P g (ω̃, u1:T , y1:T , z1:T ).

Consequently, Eψ [c(ω, U1 , . . . , UT )] = Eg [c(ω, U1 , . . . , UT )].
Proof: The proof can be found in [15]. �

We now go in the reverse direction: given a strategy φ =
(φ1 , φ2 , . . . , φT ) for the coordinator, we will construct a strategy pro-
file h = (h1 , . . . , hT ) for Problem 3. For each time t, following is the
main idea of constructing h from φ.
1) For each realization z1:t of common observations, φt (z1:t ) is an

element of U |Yt |
t , that is, it is a tuple of size |Yt |.

2) For each realization z1:t of common observations and realization
yt of the private observation in Problem 3, DM t’s decision will be
the yt th component of φt (z1:t ).

3) With a slight abuse of notation, we can describe DM t’s strategy
as

ht (z1:t , ·) := φt (z1:t ).

The above expression is to be interpreted as follows: for y =
1, . . . , |Yt |, ht (z1:t , y) is the yth component of φt (z1:t ).

Lemma 3: The probability distributions P h and P φ are identical,
that is, for any ω̃, u1:T , y1:T , z1:T

P h (ω̃, u1:T , y1:T , z1:T ) = P φ (ω̃, u1:T , y1:T , z1:T ).

Consequently, Eh [c(ω, U1 , . . . , UT )] = Eφ [c(ω, U1 , . . . , UT )].
Proof: The proof can be found in [15]. �

Lemmas 2 and 3 imply that we can first find an optimal strategy
for the coordinator and then use it to construct optimal strategies in
Problem 3.

Step 3: The key idea of this step is to show that the problem of finding
an optimal strategy for the coordinator is a sequential decision-making
problem with a classical information structure.

Recall that the coordinator at time t knows Z1:t and selects γt . Also,
recall that for each time t, we have

Zt = ζt (ω, U1:t−1 ) (18)

Yt = ηt (ω, U1:t−1 ) (19)

Ut = γt (Yt ). (20)

By eliminating Y1:T and U1:T from the above system of equations, we
can construct functions Θ1 ,Θ2 , . . . ,ΘT such that

Zt = Θt (ω, γ1:t−1 ), t = 1, . . . , T. (21)

Similarly eliminating U1:T from the cost, we can construct function C
such that

c(ω, U1:T ) = C(ω, γ1:T ). (22)

With these transformations, the coordinator’s problem can now be
written as follows.

Problem 4: Given observations Zt = Θt (ω, γ1 , . . . , γt−1 ) taking
values in Zt for t = 1, . . . , T, find a strategy ψ = (ψ1 , . . . , ψT ) for
the coordinator, with ψt : Z1:t �→ U

|Yt |
t for each t, that achieves

inf
ψ

E[C(ω, γ1 , . . . , γT )] exactly or within ε > 0

where γt = ψt (Z1:t ) for each t.
It is clear that Problem 4 is a sequential decision-making problem

with a classical information structure. The prescription γt is the coor-
dinator’s decision at time t and Z1:t is its information at time t. Hence,
we can use the analysis of Section III (in particular, Theorem 1) to find
an optimal strategy for the coordinator.

We say that the realization z1:t , γ̃1:t−1 of the coordinator’s obser-
vations and decisions is feasible if there exists ω̂ ∈ Ω with P (ω̂) > 0
such that Θk (ŵ, γ̃1:k−1 ) = zk for k = 1, . . . , t. For a given feasible
realization z1:t , γ̃1:t−1 , the coordinator’s belief on ω is given as

πt (ω̃|z1:t , γ̃1:t−1 ) :=
P (ω̃)

∏t
k=1 1{Θ k (ω̃ , γ̃ 1 :k −1 )= zk }∑

ω̂

[
P (ω̂)

∏t
k=1 1{Θ k (ω̂ , γ̃ 1 :k −1 )= zk }

] . (23)

(23) defines the coordinator’s posterior belief on ω after observing
z1:t , γ̃1:t−1 . Since the coordinator’s problem has a classical information
structure, this belief does not depend on the choice of coordinator’s
strategy.

We can now use the dynamic program of Theorem 1 for the coordi-
nator’s problem and obtain the following result.

Theorem 2: For the coordinator’s problem (Problem 4), an optimal
strategy is given by the following dynamic program:
1) Define value functions Vk (z1:k , γ̃1:k−1 ) recursively as follows:

VT (z1:T , γ̃1:T −1 )

:= min
γ̃ T ∈U

|YT |
T

EπT [C(ω, γ̃1 . . . , γ̃T )|z1:T , γ̃1:T −1 ]

Vk (z1:k , γ̃1:k−1 )

:= min
γ̃ k ∈U

|Yk |
k

Eπ k [Vk+1 (z1:k , Zk+1 , γ̃1 . . . , γ̃k )|z1:k , γ̃1:k−1 ]

(24)

for k = T − 1, . . . , 2, 1, where Zk+1 = Θk+1 (ω, γ̃1:k ) and the
expectations are with respect to coordinator’s strategy-independent
beliefs on ω [as defined in (23)].
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2) The optimal strategy for the coordinator as a function of its obser-
vations and past decisions is given as follows:

ψ∗
T (z1:T , γ̃1:T −1 )

:= argmin
γ̃ T ∈U

|YT |
T

EπT [C(ω, γ̃1 . . . , γ̃T )|z1:T , γ̃1:T −1 ]

ψ∗
k (z1:k , γ̃1:k−1 )

:= argmin
γ̃ k ∈U

|Yk |
k

Eπ k [Vk+1 (z1:k , Zk+1 , γ̃1 . . . , γ̃k )

|z1:k , γ̃1:k−1 ] (25)

for k = T − 1, . . . , 2, 1.
The dynamic program of Theorem 2 identifies an optimal strategy

for the coordinator as a function of its observations and past prescrip-
tions. We can construct an equivalent strategy φ for the coordinator by
eliminating past prescriptions so that for each t

γt = φt (Z1:t ) = ψ∗
t (Z1:t , γ1:t−1 ).

Construction of Optimal Strategies in Problem 3: We can now con-
struct an optimal strategy profile in Problem 3 using the construction
of Lemma 3: For each realization z1:t of common observations and
realization yt of the private observation in Problem 3, DM t’s decision
is the yt th component of φt (z1:t ) and we denote this by

h∗
t (z1:t , ·) := φt (z1:t ), t = 1, . . . , T. (26)

Because φ is an optimal strategy for the coordinator, Lemmas 2 and
3 imply that h∗ = (h∗

1 , . . . , h
∗
T ) is an optimal strategy profile for the

DMs in Problem 3.
Remark 2: It should be clear that the constructed strategy h∗

t in (26)
uses both common and private observations to decide DM t’s decision.
For each realization z1:t of the common observations at time t, the
partial function h∗

t (z1:t , ·) : Yt �→ Ut is precisely the prescription the
coordinator would have selected under its optimal strategy if it observed
z1:t . One could say that in Problem 3, DM t first uses its common
observations to figure out the prescription the coordinator would have
selected had it been present and then uses its private observation to pick
the prescribed action under the coordinator’s prescription.

B. Discussion

Theorem 2 provides a sequential decomposition for the coordina-
tor’s problem and, due to the equivalence established in Lemmas 2
and 3, for Problem 3 with a general (in particular, nonclassical) in-
formation structure. We call this decomposition the common knowl-
edge based dynamic program. It is important to emphasize some key
differences between the common knowledge based dynamic program
and the dynamic program for classical information structures given in
Theorem 1: First, at time k, the dynamic program in Theorem 1 in-
volves a minimization over the set of decisions available to DM k,
namely Uk . The decomposition in Theorem 2, on the other hand, in-
volves a minimization over the space of functions from Yk to Uk .
Second, for each realization of DM k’s observations, the minimizing
decision in Theorem 1 is an optimal decision for DM k for that real-
ization of observations. In the decomposition of Theorem 2, for each
realization of the common observations at time k, the minimizing γ̃k
identifies an optimal mapping from private observation to decision for
DM k.

We believe that the existence of a dynamic program in general se-
quential teams is an interesting result for the following reason: Given
such a dynamic program, one can then start investigating whether the
specific form of the information and cost structure in the given team
problem may be exploited to simplify it. We believe this has to be done
on a case-by-case basis as in classical dynamic program.

Finally, we can make a brief comment about the computational
benefit of the common knowledge based dynamic program over a

brute force search over all strategy profiles. Let |Zt | = z, |Yt | = y
and |Ut | = u. Then, the number of possible strategy profiles for the
team is

∏T
k=1 u

z k y . In the common knowledge based dynamic pro-
gram, the minimization at time k is over a set of size uy . The total
number of such minimization problems to be solved in the dynamic
program is

∑T
k=1 z

k uy (k−1) . Thus, the approximate complexity of the
dynamic program can be taken to be uy

∑T
k=1 z

k uy (k−1) . Note that
the time index appears as exponent of an exponent in the brute force
complexity, whereas it appears as an exponent in the dynamic program
complexity. This indicates computational benefits from the dynamic
program.

Remark 3: Assumption 1 is important for the analysis presented in
Section IV. For a general sequential team with infinite spaces, one may
need additional technical conditions to ensure that common and private
observations of Lemma 1 can be constructed and that the coordinator’s
strategies are well-defined measurable functions.

C. Example

Consider a team problem with two DMs. The probability space we
will consider is: Ω = {1, 2, 3, 4, 5},F = 2Ω with equal probabilities
for all outcomes in Ω. The decision spaces of the two DMs are fi-
nite sets U1 and U2 , respectively, each associated with the respective
power-set sigma-algebra. The objective is to find strategies for the two
DMs to minimize the expected value of c(ω, U1 , U2 ). We consider the
following information structure:

J1 = σ({1, 2}, {3, 4}, {5}) × {∅,U1} × {∅,U2} (27)

J2 = σ({1, 3}, {2, 4}, {5}) × 2U1 × {∅,U2}. (28)

This information structure is nonclassical, sinceJ1 �⊂ J2 . As discussed
before, we cannot obtain a classical dynamic program for such an
information structure. For this example, the common knowledge based
dynamic program can be obtained as follows:

i) The common knowledge sigma-algebras are:

C1 =
2⋂

s=1

Js , C2 = J2 . (29)

ii) We can now define common observations Z1 , Z2 and private ob-
servations Y1 , Y2 such that Ct = σ(Z1:t ) and Jt = σ(Yt , Z1:t ) for
t = 1, 2. For our example, the following definitions will meet the
requirements:

Z1 = ζ1 (ω) := 1{ω∈{5}} (30)

Z2 = ζ2 (ω, U1 ) :=

⎧
⎨

⎩

(1, U1 ) if ω ∈ {1, 3}
(2, U1 ) if ω ∈ {2, 4}
(5, U1 ) if ω ∈ {5}

(31)

Y1 = η1 (ω) := 1{ω∈{3 ,4}}

Y2 = η2 (ω, U1 ) := 0. (32)

iii) In addition to the common and private observations, our sequential
decomposition makes use of prescriptions that map private observations
to decisions. For our example, we will need the prescription at t = 1:
γ1 : {0, 1} �→ U1 . The space of all such prescriptions can be written
as U1 × U1 .

iv) Based on common observations and prescriptions, we define the
following strategy-independent beliefs on ω.

π1 (ω̃|Z1 = 1) =

{
1 if ω̃ = 5

0 if ω̃ �= 5
(33)

π1 (ω̃|Z1 = 0) =

{
1/4 if ω̃ �= 5

0 if ω̃ = 5.
(34)
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For each function γ̃1 : {0, 1} �→ U1 , define

π2 (ω̃|Z1 = 1, Z2 = (5, u1 ), γ̃1 ) :=

{
1 if ω̃ = 5

0 if ω̃ �= 5.
(35)

For i = 1, 2

π2 (ω̃|Z1 = 0, Z2 = (i, u1 ), γ̃1 ) (36)

:=
1{ζ 2 (ω̃ , γ̃ 1 (η 1 (ω̃ )))= (i ,u 1 )}

∑
ω̂ �=5

[
1{ζ 2 (ω̂ , γ̃ 1 (η 1 (ω̂ )))= (i ,u 1 )}

] if ω̃ �= 5; (37)

π2 (ω̃|Z1 = 0, Z2 = (i, u1 ), γ̃1 ) := 0 if ω̃ = 5.
iv) We can now define value functions based on common observa-

tions and prescriptions.

V2 (z1:2 , γ̃1 ) := min
u 2 ∈U2

Eπ 2 [c(ω, γ̃1 (η1 (ω)), u2 )|z1:2 , γ1 ]

V1 (z1 ) := min
γ̃ 1 ∈U1 ×U1

Eπ 1 [V2 (z1 , ζ2 (ω, γ̃1 (η1 (ω))), γ̃1 )|z1 ] (38)

where the expectations at t = 2, 1 are with respect to the beliefs defined
in (33)–(36). Our result in Section IV shows that optimal strategies
for the two DMs can be obtained from the value functions defined
above in a straightforward manner. Thus, even though the information
structure of the team was nonclassical, we can still obtain a sequential
decomposition of the strategy optimization problem.

V. COMPARISON WITH CLASSICAL DYNAMIC PROGRAM AND

WITSENHASUEN’S STANDARD FORM

The analysis of Section IV and Theorem 2 apply to all sequential
team problems under Assumption 1. We consider two special cases in
this section.

A. Classical Information Structure

We show that Theorem 2 is equivalent to the classical dynamic
program of Theorem 1 when the sequential team problem has a classical
information structure. The nestedness of information sigma-algebras
in classical information structures (i.e., Jt ⊂ Jt+1 for all t) implies
that the common knowledge sigma-algebra at time t is the same as Jt :

Ct :=
T⋂

s= t

Js = Jt . (39)

We can construct common observations as in Lemma 1 such that Ct =
σ(Z1:t ). Since Ct = Jt , the private observation can be defined as a
constant

Yt := ηt (ω, U1 , . . . , Ut−1 ) := 1. (40)

The implication of (39) is that the coordinator’s information at time t is
the same as DM t’s information. Moreover, since Yt is a constant, the
coordinator’s decision space U |Yt |

t = Ut . The prescription γt is simply
the decision to be taken at time t. Thus, in the classical information
structure case, the coordinator prescribes a decision to DM t based on
the observations Z1:t .

Substituting γt = Ut and using the fact that |Yt | = 1 for all t, it
is easy to check that the result of Theorem 2 reduces to the result of
Theorem 1. Thus, the dynamic program of Theorem 1 for classical
information structures can be viewed as a special case of the common
knowledge based dynamic program of Theorem 2.

B. Trivial Common Knowledge

In some information structures, the common knowledge among DMs
may just be the trivial sigma algebra.

Ct :=
T⋂

s= t

Js = {∅,Ω × U 1:T }. (41)

In this case, the common observations of Lemma 1 can be defined as
constants

Zt := ζt (ω, U1 , . . . , Ut−1 ) := 1 (42)

and the private observation at time t describes all the information of
DM t. The coordinator’s prescription at time t can be interpreted as
DM t’s strategy—it provides a decision for each possible realization
of DM t’s observations. Moreover, since the common observations
are constants, the coordinator’s problem can be viewed as an open-
loop control problem with the associated dynamic program given by
Theorem 2. This is similar to the sequential decomposition of team
problems in [17].

VI. CONNECTIONS WITH THE COMMON INFORMATION APPROACH

In the intrinsic model, the information of DM t is represented by a
sigma-algebra Jt ⊂ F ⊗ U1:T . Alternatively, the information of DM
t could be described in terms of the observations it has access to.
Consider a team problem where for each t DM t has access to the
following observations: Z̃1:t , and Ỹt . For each t, Z̃t and Ỹt are functions
of ω, U1:t−1 . We will refer to Z̃1:t as the common information at time
t and Ỹt as the private information at time t.

Given the above information structure, we can follow the steps of
Section IV-A, using Z̃1:T , Ỹ1:T instead of the common and private
observations Z1:T , Y1:T described in Lemma 1, to construct a coordi-
nator’s problem. The coordinator now knows the common information
Z̃1:t at time t and selects prescriptions that map the private information
Ỹt to decision Ut . Since this new version of the coordinator’s problem
is still a sequential decision-making problem with classical informa-
tion structure, we can find its dynamic program in the same way as in
Section IV-A. Such an approach for sequential team problems that uses
common information among DMs to construct the coordinator’s prob-
lem and its associated dynamic program was described in [12]. It was
used in [13] and [14] for studying delayed history sharing and partial
history sharing models in decentralized stochastic control problems.

We can make the following observations about the relationship be-
tween the common information approach summarized above and the
common knowledge based approach of this note:

First, the common information approach for sequential teams re-
quires the information structure described above: for each t DM t has
access to Z̃1:t , and Ỹt . Thus, it requires that there is a part of the DMs’
information that is nested over time. If no such part exists, one can still
use the common information approach by creating degenerate observa-
tions Z̃t = 0 for each t. As mentioned earlier, the common knowledge
approach of this note applies to any sequential information structure.

Second, the common information based dynamic program may be
different from the common knowledge based dynamic program ob-
tained in Section IV-A. To see why, note that the sigma-algebra associ-
ated with DM t in the above information structure is Jt = σ(Z̃1:t , Ỹt )
and the common knowledge sigma-algebra at time t is Ct =

⋂T
s= t Js .

It is straightforward to see that the common information at time t,
Z̃1:t , is measurable with respect to Ct . In other words, σ(Z̃1:t ) ⊂ Ct .
However, it may be the case that σ(Z̃1:t ) is a strict subset of Ct . Thus,
the coordinator based on common knowledge may be more informed
(i.e, it may be associated with a larger sigma-algebra) than a coor-
dinator based only on common information. This difference between
the two coordinators’ information implies that the associated dynamic
programs may be different.
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Furthermore, the common information based dynamic program
may be computationally more demanding than its common knowl-
edge based counterpart. To see why, recall that we construct com-
mon and private observations in the common knowledge approach to
ensure that σ(Z1:t ) = Ct and σ(Z1:t , Yt ) = Jt . Thus, we have that
σ(Z̃1:t ) ⊂ σ(Z1:t ) but σ(Z̃1:t , Ỹt ) = σ(Z1:t , Yt ). This implies that
the private observation Yt can take values in a smaller space than the
original private information Ỹt . This, in turn, implies that the prescrip-
tions in the common knowledge dynamic program take values in a
smaller space (U |Yt |

t ) than the space of prescriptions in the common

information dynamic program (U |Ỹt |
t ). Thus, the common information

approach may result in a more complicated dynamic program than that
resulting from the common knowledge approach.

To illustrate that the common information based dynamic program
may be different from the one obtained using common knowledge,
we consider a team problem with threeDMs. The probability space is:
Ω = {1, 2, 3, 4, 5},F = 2Ω with equal probabilities for all outcomes
in Ω. The decision spaces of the three DMs are finite sets U1 ,U2 , and
U3 , respectively, each associated with the respective power-set sigma-
algebra. The objective is to find strategies for the DMs to minimize the
expected value of c(ω, U1 , U2 , U3 ). The information structure is given
in terms of the observations each DM has access to.
1) DM 1 knows

X̃1 :=

⎧
⎨

⎩

1 if ω ∈ {1, 2}
3 if ω ∈ {3, 4}
5 if ω ∈ {5}.

2) DM 2 knows

X̃2 :=

⎧
⎨

⎩

1 if ω ∈ {1, 3}
2 if ω ∈ {2, 4}
5 if ω ∈ {5}.

3) DM 3 knows X̃1 and

X̃3 :=

⎧
⎨

⎩

1 if ω ∈ {1, 4}
2 if ω ∈ {2, 5}
3 if ω ∈ {3}.

For this information structure there is no common information at
t = 1, 2. In particular, there is no observation Z̃1 that is available
to all three DMs and there is no observation Z̃2 that is available to
DMs 2 and 3. The private informations can be taken to be Ỹ1 = X̃1 ,
Ỹ2 = X̃2 , and Ỹ3 = (X̃1 , X3 ). Thus, the coordinator in the common
information approach for this example will have no observations and the
resulting dynamic program will be similar to Witsenhausen’s sequential
decomposition.

If we consider the sigma-algebras σ(X̃1 ), σ(X̃2 ), σ(X̃1 , X̃3 ) as-
sociated with the DMs, then it can be easily seen that the common
knowledge sigma-algebras are nontrivial and are given as follows:
1) C1 = σ(Z1 ), where Z1 = 1{ω=5}. In other words, C1 =
σ({1, 2, 3, 4}, {5}) ⊗ {∅,U1} ⊗ {∅,U2}.

2) C2 = σ(X̃2 ). That is, C2 = σ({1, 3}, {2, 4}, {5}) ⊗ {∅,U1} ⊗
{∅,U2}.

3) C3 = σ(X̃1 , X̃3 ). In other words, C3 = 2Ω ⊗ {∅,U1} ⊗ {∅,U2}.
Thus, in this example, the coordinator in the common knowledge

based dynamic program will have nontrivial observations and the cor-
responding dynamic program will be distinct from Witsenhausen’s
sequential decomposition.

VII. CONCLUSION

We considered sequential team problems based on Witsenhausen’s
intrinsic model with finite probability and decision spaces. We started
with the case of classical information structures and reviewed the clas-
sical dynamic program for this case. We then defined the concept of

common knowledge in sequential team problems with general infor-
mation structures. We showed how common knowledge can be used to
construct a sequential decomposition of sequential team problems by
means of an equivalent sequential decision-making problem that has
a classical information structure. This equivalent problem was formu-
lated from the perspective of a coordinator who knows the common
knowledge. This common knowledge based sequential decomposition
unifies the dynamic programming results of classical information struc-
tures and Witsenhausen’s sequential decomposition of general sequen-
tial problems. In addition to providing an analytical and computational
benefit, the development of sequential decomposition for team prob-
lems with nonclassical information structures opens up the possibility
of systematic methods for finding structural results and information
states for DMs in such problems.
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